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[. INTRODUCTION

This is a report on our code calculations in
support of shock-tube experiments that are now 1in progress at
CalTech. The primary purpose of the experiments is to study the
evolution of perturbations and the subsequent mixing when a shock
passes through the interface between two gases. The Richtmyer-
Meshkov1-2(RM) instability causcs initial, i.c. pre-shock perturbations
at an interface between two fluids to grow after the passage of the
shock, much the same way as the Rayleigh-Taylor3(RT) instability
acts in a constant gravitational field.

The compressible nature of the RM problem
makes analytic treatment difficult. An "incompressible” theory, in
which the shock 1is treated as an instantaneous acceleration, was
given by Richtmyer! for the linear regime where the amplitude of
the perturbation is much smaller than its wavelength. Direct
numerical simulations and experiments are necessary to understand
the fully compressible and non-linear nature of the problem.

The code that we have used is an Arbitrary
Lagrangian-Eulerian (ALE) code in which rezoning is done
automatically in zones satisfying certain requirements of skewness,
etc. It also allows for mixed zones across an interface. An artificial
viscosity is used for numerical stability in shock problems. More
details about the code are given in Ref. }

In the simulations we treat the walls as
reflecting boundaries (free slip), hence we do not include any of the
boundary layer effects which may be present in the experiments.
Also, we simulate the full width of the tube, without imposing any
symmetry around the center of the tube. Problems that start
symmetric develop some asymmetry at late times, but not much.

In Fig. T we show a schematic of the shock
tube and of the types of probleins that we considered. A shock, of
strength Mg=1.2 - 1.3, moves from air into a test gas which can be



helium, freon (or refrigerent Rj;) or SFg . Helium is about 7 times
lighter than air, while freon and SF6 are 4 and 5 times heavier than
air respectively. The cross-section of the tube is 11.3c¢cm x 11.3cm. We
have also done calculations for a 9cm wide tube because an earlier
shock-tube was approximately 9cm < 9cm. The length of the test-gas
section can be varied, and of course it controls the time when the
reflected shock crosses the interface. In practically all our
calculations we considered a 60cm long helium section and a 30cm
long freon or SFg section (a longer helium section is chosen because

the shock is faster in that case). In a very recent experiment with SFg

the length of the test section was 10cm - the simulation of that
experiment is discussed in Sect. V.

The velocities of the air/helium and air/freon
interfaces are shown in Fig. 2. In the 60cm long helium case it takes
about 1ms for the reflected shock to hit the interface, while in the
30cm long freon case it takes about 2.4ms. We continue our
calculations for approximately 1ms beyond the reflected shock.

We expect to carry out more detailed
calculations in the future when experiments become available.
Rather than concentrate on a few problems, we have here looked at a
variety of possible experiments that can be done on a shock tube. It
is important to understand this spirit in which the calculations
reported here were carried out - to suggest ideas to experimentalists
in this area. Of course we expect some, at least qualitative, agreement
between future experiments and our calculations. As such, this
report must be viewed more as work-in-progress than a finished
effort. Once the experimental results become available we are
prepared to do a much more detailed calculation . The one

comparison discussed in Sect. V suggests that the code is doing a
reasonable job.

Fig. 1 is also an outline of this paper. In Sect. 11
we treat single-scale perturbations where several identical bubbles
are set up next to each other. Experiments of this type were
performed in an earlier shock-tube at CalTech, but the initial
conditions were not well-characterized, in particular the initial
amplitudes were not measured ; they will be repeated in the new
shock-tube. The single-scale perturbations may be set up at the
air/helium, air/freon, or air/freon/air interfaces. In Sect. Il we
consider double-scale experiments in which a large bubble is set up



next to smaller ones. The idea here is to measure and compare the
growth of different size bubbles, particularly in the non-linear
regime. In Sect. IV we consider multi-scale and random
perturbations at various interfaces. Here we want to measure how
the mixing evolves from very small perturbations. In Sect. V we
simulate a recent experimentd and discuss variations of it; both large
and small scale perturbations at a diffuse air/SFg interface were
involved in this experiment. Finally, in Sect. VI, we present a few
conclusions and remarks.



II. SINGLE-SCALE PERTURBATIONS
A. Air/Helium

Fig. 2(a) shows the velocity of the air/helium interface
as a shock of Mach number Mg= 1.2 passes from air into helium,
reflects off the end wall, and recrosses the interface. For the 60cm
long test section, this takes approximately Ims, and we follow the
motion of the interface for another millisecond. and then stop the

calculation, just as a second reflected shock is about to cross the
interface.

The gross features of perturbations at the air/helium
interface are easy to predict: since helium is approximately 7 times
lighter than air, the Atwood number A, where

A= (ptcstgas - Pair) (Prestgas * Pair) (1)

is -0.75. Upon the passage of the first shock, perturbations will
change phase and then grow, which happens whenever a shock
“sees” a negative Atwood number. The reflected shock, moving from
helium to air, sees a positive Atwood number and simply adds to the
growth rate without causing a phase change.

The evolution of a single cosine perturbation is shown in
Fig. 3, with the arrows indicating the incident and reflected shocks..
The initial amplitude n(0) was 0.2cm, i.e. peak-to-valley distance was

0.4cm. These snapshots confirm the expected gross features of phase
reversal and subsequent growth.

More quantitatively. we plot in Fig. 4(a) the following
variables: R;p , the position of the interface with no perturbations; Rp,

the position of the bubble; and Rg ., the position of the spike, as
functions of time. In Fig. 4(b) we plot the bubble amplitude
ng=Rp-Rp and the spike amplitude ng = R - Ry . Note that cross-
over time, when mg =mng =0,is about 0.2ms, corresponding to the
second snapshot in Fig. 3. The spike, i.e. the heavy air "falling" into



helium, continues to grow after each shock. The bubble, i.e. the light
helium "rising” towards the heavier air, also grows after each shock,
albeit at a slower rate than the spike. It is interesting that the
general shape of bubbles and spikes is strongly reminiscent of the
classic Rayleigh-Taylor instability.

The interface assumes this non-linear shape after the
reflected shock crosses the interface. Up to that time it preserves its
cosine shape, i.e.

n(x,t) = n(t)cos(kx) (2)

with n(t) given approximately by Richtmyer's formula

n(t) = n(0)1 + AkAvl). (3).

This equation ignores compressional effects because it
is derived from incompressible Rayleigh-Taylor theory(see Ref. 1),
and we will see that it overestimates the growth rate. At issue is the
value of the initial amplitude m(0) and, to a lesser degree, of the
Atwood number A: should one use their pre-shock or post-shock
values, or, as suggested in Ref. 6, an average over their pre-shock
and post-shock values? Either prescription is phenomenological, but
it is clear that compression will reduce n(0). Let us point out that the
cross-over time, i.e. the time when n(t) = 0, is independent of m(0)
and, from Eq.(3),

teross-over = ‘(AkAV)_]

To compare with our 2D calculations, we will replace Avt by Ay, the
distance travelled by the interface after the first shock; hence

AYcross-over = “A/(2RA) . 4)

We have checked this relation by changing the initial amplitude by
factors of 2 and 4 and noticing that the cross-over time or distance is
indeed the same in all three cases. For the case shown in Fig. 3,
re. A = 10cm, Eq.(4) gives AYcross-over = 2.1 ¢m, in fair agreement with
the 2.5 cm seen in Fig.3(b).



Between the incident and reflected shock the
interface covers a distance of 14.5 cm. Writing Eq.(3) as

n(Ay) = n(0)(1 + AkAy) (5)

we obtain Mn(14.5) = 0.2 x (1 - 0.75 x 2 <t x14.5/10) = -1.17. From Fig.
3(d) we see that ng = 0.75cm and ng = -0.90cm, somewhat smaller,

presumably because of compression, than calculated. The asymmetry
between bubble and spike is a well-known non-linear effect.

That asymmetry is further amplified after the passage of
the reflected shock, as we see in Fig. 3(e) and 3(f). By the end of the
problem, ng = 1.6cm while ng = -34cm. This "saturation” of the

bubble amplitude is reflected in its slower growth rate as seen in Fig.
4.

We now study the dependence on the initial
amplitude mn(0). Just as the asymmetric evolution of bubbles and
spikes is an indication of non-linear effects, an even clearer
indication is when our results stop being proportional to the initial
amplitude. Fig. 5 shows the air/helium interface at t=1.9ms as it
evolves from three different initial amplitudes: n(0)=0.2cm, 0.4cm,
and 0.8cm. While the initially larger perturbations do evolve into
larger bubbles and spikes, the results are far from being proportional
to n(0): as we double and quadruple n(0) . the bubble amplitude at
1.9ms increases only by a factor of 1.3 and 1.6, while the spike
amplitude increases by a factor of 1.5 and 2 respectively. Note that
the asymmetry between bubble and spike increases as we 1ncrease

n(0).

Instead of varying the magnitude of n(0), one might
change its phase, i.e. let n(0) » m(0) (This is experimentally easy to
do). Of course one merely interchanges the location of the bubbles
and the spikes. Since there is a large asymmetry between bubbles
and spikes in the non-linear regime, the visual effect can be quite
impressive. In Fig. 6 we compare the late time isodensity contours
for two problems one of which started with n(0) = 0.2cm and the
other with n(0) = -0.2cm.



From the vanations in n(0) we now turn to study
variations in A . Wavelengths shorter than the tube width are set up
by a set of wires across the thin membrane. This procedure gives a
bowed membrane shaped more like a parabola than a cosine. While
there are differences between these two shapes at early times,we
find that at late times the differences are rather small. We have
checked this by running several examples with a cosine or a parabola
whose peak-to-valley distances were the same. For example, in Fig. 7
we show the interface at 1.9ms for these two cases. The parabolic
shape evolves somewhat slower than the cosine and the spike 1is
wider, suggesting that the effective A for a parabola of width D is
somewhat larger than D, but not by much. Of course, in comparing
with experiments we will use parabolas.

The case shown in Fig. 7 was for the longest
wavelength, i.e. the width of the tube. For the higher harmonics the
difference between a cosine and a parabola is even less because the
shorter wavelengths get more quickly to the non-linear regime
where the exact shape of the initial perturbation matters less. In
discussing the higher harmonics we will show only the parabolic
cases.

Figs. 8 and 9 show the evolution for 2 and 4 parabolas
respectively. The times chosen for these snapshots match those of
Fig. 3. As expected from linear theory, the early growth of shorter
wavelengths is faster  because dn/di ~ 1/A , but note that they
saturate earlier and by t=1.9ms the differences between 1,2 or 4
parabolas , all starting with the same peak-to-valley amplitude of
0.4cm, are rather small. In Fig. 10 we show isodensity contours of
these three cases.

Finally, we ran a couple of calculations with a
stronger shock: Mg=1.5. The purpose was to check the scaling w.r.t.
the jump velocity Av, which approximately doubles by going to this
faster shock. The problems were single cosine perturbations as in
Fig. 3, one with n(0)=0.2cm and the other with n(0)=0.4cm. First, we
checked that the cross-over distance was the same, ~2.5cm, in fair
agreement with Eq.(4), in all cases Second, we compared the
interface after it had travelled & distance of 14.5cm and again the
shapes were similar between a Av=I4cm/ms and a Av= 30cm/ms
shock. We ran the faster shock probiem a little beyond the time
where a second reflected shock goes through the interface, inducing
further growth. In Fig. 11 we show the evolution of this faster shock



problem which started with 1n(0)=0.4cm. Note that the vertical

distance (12cm) in these snapshots is twice the distance in the
earlier ones.

B. Air/Freon

We now replace the test gas by freon, 30cm long. The
velocity of the air/freon interface was shown in Fig. 2(b): after
passing through the interface the shock takes about 2.4ms to reflect
off the end wall and re-cross the interface. Since AvVipierface=7-9

cm/ms, the interface travels approximately 18cm during this time.

The gross features of the perturbations are once again
easy to predict: freon being heavier than air. the first shock merely
increases the perturbations as in the classical RT instability: light
fluid (air in this case) pushing on heavier fluid(freon in this case).
During the 2.4ms that it takes for the shock to come back the
perturbations may evolve into the non-linear regime depending on
their initial amplitude and wavelength. In any case the reflected
shock, going from heavy-to-light, will change the phase of the
perturbations. If by that time thev have reached the non-linear
regime then the phase-reversed perturbations can look quite
different from the initial perturbations and only the periodicity of
the pattern will be preserved.

The evolution of a single wave is shown in Fig. 12.
The initial amplitude was 0.2cm, and it grows to about 1.2cm by the
time the reflected shock arrives there. This growth by a factor of 6 is
somewhat smaller than the 7-8 fold increase predicted by Eq.(2),
where we take Avt = Ay = 17cm, k=2 x ©/10cm !, and A=0.6. The
discrepancy 1is probably due to the compression of the initial
amplitude, as suggested by Richtmyer.

The bubble-and-spike formation in the non-linear
regime is similar to the air/helium case: bubbles grow slower than
spikes (note that in this problem the spikes are near the walls). In
Fig.13(a) we show the 1D position of the interface and the locations
of the tips of the bubble and the spike as functions of time. The
amplitudes are shown in Fig. 13(b)
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There are differences between the air/helium and
air/freon cases stemming primarily from the different densities of
helium and freon. The first order difference is obviously in the jump
velocity Av, which to some extent can be taken care of by scaling
time proportionally, i.e. using Ay=Avt as the independent variable
instead of time. Better yet, use AAy. To account for the sign of A,
allow a distance of 2Ay . yss-over JhES€ prescriptions are exact in the

linear regime : Eq. (5) is invariant under A-»-A, n(0)--n(0), and Ay—
AY-2AVcross-over While Eq.(5) obviously fails in the non-linear

regime, the scaling it suggests may be used to compare the evolution
of perturbations in different gases or fluids.

One difference not predicted by this scaling law is
the difference in the shape of the interface - there i1s more
mushrooming at lower Atwood numbers. By mushrooming we refer
to the spreading and roll-up of the wings of the spike; a clear
example is seen in Fig.11(d). The existence of mushrooming, and its
inverse correlation with Atwood number, reinforces the similarities
between RT and RM instabilities.

To illustrate this point, we show in Fig. 14 the
air/helium and air/freon interfaces for the cases when they started
with identical perturbations, and moved about 12cm after the first
shock (According to the scaling arguments above, this distance
should slightly favour the air/helium case because the ratio of the
Atwood numbers 0.75/0.60 times Ay more than compensates for the
difference 2Ay . oss-over). In Figs. 14(a) and 14(b), A= Scm, and the
peak-to-valley distances are about 2cm in both cases, and the shapes
are not too dissimilar, though ont can observe the beginning of
mushrooming in Fig. 14(b). The musarooming is highly obvious in the
shorter wavelength case, A=2.5cm. Though total peak-to-valley or
bubble-to-spike distances are roughly the same in both cases(about
2.5cm), the shapes are quite differeat. The air/helium case also also
developes mushrooms as shown in Fig.9, but it happens much later.

Finally, we turn ‘o the possibility of "freeze-out". As
discussed in Ref.7, in a two-shock system it is possible to freeze the
amplitude. In a shock tube, where he second shock is a reflected
shock, it is clear that freeze-out is extremely difficult in the
air/helium combination (the reflected shock must come before the
initial amplitude changes phase - sec¢ Fig. 3(n) in Ref.7), but it is
possible, in principle , in the an/freon combination where the
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amplitude, instead of reversing its phase and overshooting after the
passage of the second shock, merely stops growing (this is the case
indicated by Fig. 3(c) in Ref.7). Applying that analysis here, we see
that freeze-out will not occurr in shock tubes with solid end walls
because the reflected shock is stronger than the first, i.e. JAv, | >
lAv |, where Av) o tefers to the jump velocity of the interface
induced by the first and second shocks respectively (in the case
considered here Avy; = 7.5cm/ms and Av, = 10cm/ms, as shown in
Fig.2(b)). The reason why a weaker second shock is required for
freeze-out is simple: freeze-out occurs when the growth rate induced
by the second shock cancels exactly the growth rate induced by the
first shock. Since the growth rate is proportional to the product of the
jump velocity and the amplitude at the time the shock passes thru,
one must have a weaker second shock to compensate for the fact that
the amplitude grows in-between shocks (changes in Atwood number
are small). Of course if Avy < |Av; | the interface will keep moving,
albeit slower, in the same direction as the original shock. Such a
situation may be possible with some kind of a shock absorber instead
of a solid wall at the end of the tube. Even then a delicate timing,
achieved by a judicious choice of the length of the test section, is
needed:

v, |- v, |
- A k lAV]Av2 |

At (6)

where At is the time between the 1st and 2nd shocks. For the present
set up we have Av{=7.5cm/ms, A=0.6, and k=2n/10cm-! for a single
wavelength across the tube. If Avy | can be reduced to 2cm/ms, then
we find At =Ims. This would freeze the amplitude after it has grown

to about 4 times its initial value. The timing is independent of the
actual value of that amplitude.

C. Air/Freon/Air

While there are only 2 basic possibilities in 2-fluid
experiments (positive and negative Atwood numbers) there are 4
basic combinations in 3-fluid experiments which have two interfaces:
++, --, -+, and +-, where * refers to the Atwood number at each



interface. For example, air/freon/helium would be the +-
combination. We have simulated a special case of the +- combination,
air/ffreon/air because of its symmetry and because this combination
is similar to a heavy shell in ICF capsules which is surrounded by
lighter fluids (a staging fluid on one side and fuel gas on the other).

Another parameter that is introduced by going to
3-fluid experiments is the thickness of the middle layer. Finally, one
can impose perturbations on either one or both interfaces. Clearly, a
large variety of experiments can be done in this category.

To be specific, we chose a 4cm thick layer of freon
which is 60cm away from the end of the tube, a section taken to be
filled with air as shown in Fig. 15(a) (The width in these calculations
was taken to be 9cm). The shocked layer of freon is compressed to
3cm and travels at about 10cm/ms. The shock takes 2.5ms to return,
so the freon layer travels about 25c¢m before it meets the reflected
shock. The calculations are stopped approximately 1ms after this
time. In Fig. 15(b) we show the positions of the upper and the lower
surfaces of freon as functions of time.

In Fig. 16 we show the evolution of the freon layer
which starts with a single cosine perturbation of amplitude 0.2cm on
its upper surface. This is clearly the simplest case of 3-fluid
experiments which may be analytically treated, as discussed below.
We are particularly interested in the phenomenon of feed-thru,
whereby a perturbation from one interface feeds through to another
interface. In Fig. 16 we see the lower interface. which starts perfectly
flat, acquiring some perturbations as a result of feed-thru from the
upper surface. As expected, this secondary perturbation is further
amplified upon the return of the reflected shock.

Before we turn to other variations, of which there
are many, let us discuss simple analytical approaches to this problem
We will limit ourselves to the linear regime because, as far as we
know, there is no analytic treatment of the non-linear regime even
for the case of a single interface, let alone two interfaces. This is not a
bad assumption for a good period of time because the amplitude
stays small relative to the wavelength, at least until the reflected
shock comes through.

The simplest approach would have been to treat
each interface separately. While this may be acceptable for the
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initially perturbed upper interface, it clearly fails for the lower
interface where the whole effect comes from feed-thru or interface-
coupling (we use these terms interchangeably). The coupling serves
to seed perturbations at the lower interface which grow "on their
own" after the second shock.This is not to say that there is no
interface coupling after the second shock (in fact there is more of it-
see Fig. 16), but the point is that an independent treatment of the
interfaces would predict absolutely no perturbations at the initially
flat lower interface and miss the necessary seed that fuels the later
growth.

An analytic treatment of interface coupling in RM
instabilities was given in Ref.7, again treating the shock as an
instantaneous acceleration. The simplest case is that of a fluid layer
immersed in a "massless” gas, which is somewhat similar to the freon
layer in air considered here. To leading order in e'kAl where Al =
thickness of the fluid layer, we obtain

Nupper = NnOX1 + kAvt) (7)

Miower

2n(0)e-kAlkA vt (8)

We dropped higher order corrections to these equations because
e-kAl = (6-12)% when we take k=2n/9cm-! and Al=(3-4)cm. Complete
expressions are given in Ref.7.

To this order, Eq.(7) describes the perturbation
at the upper interface evolving independently. Interface coupling is
of order e-kAl = One must remember that to obtain simple expressions
the upper and lower surfaces are assumed to have A = *£1.
Nevertheless, we will compare the ratio Njower/Mypper at Avi=20cm,
Eqs.(7) and (8) predict 0.7cm/3cm = 0.2 , while from the 2D
calculation shown in Fig. 16 we obtain 0.3cm/1.6cm = 0.2. Eqgs.(7)
and (8) predict too large a value for the individual values of the
amplitudes which is not surprising because the actual Atwood
number is 0.6, but the ratio Migwer/Mypper scems to be given fairly
accurately. This ratio is the same whether w« use the pre-shock or
post-shock amplitude m(0), but it does depend on the thickness Al
used in e kAl The ratio 0.2 is obtained by using the post-shock vaue
Al=3cm. It goes down to about 0.1 if ‘he pre-shock value Al=4cm is



15

used. Clearly, there is less interface coupling across a thicker Ilayer,
but it is not clear if the exponential drop-off with thickness is
correct. We have to study these and related questions elsewhere.

The choice of an initially 4cm thick layer was
motivated by the following: to see interface coupling the ratio Al/ A
must not be too large, i.e. the layer must not be too thick relative to
the wavelength. Higher harmonics, as discussed below, have shorter
wavelengths and therefore require thinner layers for this purpose.
On the other hand, to survive the shocks the layer must be
relatively thick. We found that 4cm of freon fulfilled both
requirements in our calculations.

In Fig. 17 we show the case where both upper and
lower interfaces of the freon layer are bowed initially in the same
direction (these shapes are parabolic). By the end of the problem,
approximately 1ms after the reflected shock, we see the freon layer
has turned into a bubble that is breaking off the side walls.

In Fig 18 we show another case: the lower
interface is flat (as in Fig.16), but the upper interface has two
wavelengths of perturbations. Experimentally, this would be done by
trapping freon gas between two membranes, the upper membrane
having a thin wire running through the middle, and by slightly
increasing the pressure in the upper air layer to bow the upper
membrane into the shape shown in Fig. 18(a). The opposite case,
where the lower membrane is bowed with the opposite phase, is
shown in Fig. 19.

The reflected shock is not much weaker than the
first shock, so the freon layer almost comes to rest in all cases. This
has obvious experimental advantages: the layer of interest remains
within the detector window for a long time. Also, since there is
almost no net flow, we expect that wall/boundary effects will be
suppressed. To the extent that the shocks are the same, the
difference between the two cases where the perturbations are on the
upper or on the lower layer reflects the difference between a
perturbation first growing then phase reversing and vice versa.

Comparing Fig. 18 and 19 one may conclude that
the side which starts with an initial perturbation ends up having
larger perturbations than the side with no initial perturbations. This
s probably true in systems stbjected to shocks only. In systems



where shocks and constant accelerations are combined, as in ICF
capsules, one can find cases where it i1s no longer true that the
surface which starts smoother ends up smoother. Several examples
are given in Ref. 7.

Figs. 16,18 and 19 show an unbroken, albeit
curved, layer of freon up to 3.5ms after the first shock. Only when
perturbations of the same amplitude (0.2cm) are set up on both
interfaces, as in Fig. 17, do we see the layer beginning to break up.
We will find the same feature in Sect. IVC when we set up random
perturbations at these interfaces.



III. DOUBLE-SCALE PERTURBATIONS

Double-scale perturbations can be set up
experimentally in a straightforward manner using the same
technique of laying wires across the thin membrane that separates
the two gases. By placing wires which are not equidistant from each
other or from the walls of the shock tube, one can set up
perturbations which have two or more scales. In this Section we
report our numerical experiments of this type.

These calculations were done with helium as the
test gas, 60cm long. The initial interface consists of 3 bubbles, with
the central bubble twice as long as the two side bubbles(see Fig. 20).
The bubbles all have the same height: 0).4cm peak-to-valley.

By having a long and a short wavelength
perturbation next to each other we can see how differently they
evolve. As shown in Fig.20, shortly after the passage of the shock the
shape of the interface is reversed with the larger central bubble
lagging behind the two smaller side bubbles. This is expected from
the linear theory- larger wavelengths move slower than shorter
wavelengths. What is more interesting is that as the bubbles get into
the non-linear regime, and in particular after the reflected shock, the
wider bubble catches up with the shorter ones and after that they
advance together into the test gas. The shorter side bubbles appear
to have broken off, but their heads are in line with that of the wider,
mushrooming central bubble.

The same qualitative features were seen
when we made the central bubble 4 times larger than the side
bubbles. Alternatively, we made the central bubble 2 times smaller
than the side bubbles, and again we saw the initially larger bubbles
catch up with the smaller one and then all three advance with a
fairly uniform front into the test gas.

An Interesting variation on the problem shown
in Fig. 20 is the case where the central bubble is not only 2 times
wider but also 2 times higher than the side bubbles. We find in this
case that the increased height makes up for the larger width at early
times, so that the central bubble no longer lags behind the other two.

17



This is shown in Fig. 21. At late times, the central bubble now leads
the two adjacent ones.

A logical limit in this class of problems is the case
where there are no side bubbles but only a central bubble with flat
extensions to the walls of the shock tube. This problem is shown in
Fig. 22- the central bubble is the same as in Fig. 20, but the two side
bubbles are missing( this may be c¢xperimentall difficult but not
impossible to set up). It is interesting thai with the side bubbles
absent there 1s a little more penetration into the test gas (helium)
than with the side bubbles present. In general, however, the late
time total penetration width is a reiatively weak function of the
initial interface, ranging between 6.2cm and 80 cm in Figs. 20-22.

The problems discussed so tar were symmetric
about the center line of the shock tube, at least imitially.The left-right
asymmetry about the central line seen at late times, in particular in
Fig. 21, 1s a measure of numerical diffusion occurring in the code and,
of course, should not appear experimentally as fong as the initial
conditions are set up symmetrically. We also ran a problem which
initially was not symmetric: a large bubble nexr to a small one - ie. a
single wire laid off to one side instead of the center of the shock tube
membrane. The evolution of such a problem is shown in Fig. 23,
where the large bubble to the right is 3 times wider than the one one
on the left (the amplitudes are the same). At late times we see the
larger bubble expanding to choke-off the smaller bubble.

In this Section we have covered what we
believe to be the simplest double-scale experiments, symmetric and
asymmetric. They give us an insight into how perturbations, of
different wavelengths and/or amplitudes interac: with each other. In
the next Section we consider multi-scale and random perturbations,
as these match more closely actual surface condition:.

18



19

IV. MULTI-SCALE AND RANDOM PERTURBATIONS

A. Air/Helium

From single and double-scale perturbations we
proceed directly to multi-scale and random perturbations. Multi-
scale perturbations are generated by adding a large (10-15) number
of sine-waves with different amplitudes and wavelengths, an
example of which is shown in Fig. 24. In addition to the sum, the
functions defining the air/helium interface had a quadratic envelope
of the form x(1-x) which ensured that the perturbations vanished
near the walls (x is the position across the shock tube in units of the
width of the tube, so that x=0 and x=1 define the left and right walls
respectively). The evolution of a typical multi-scale perturbation,
shown in Fig. 24, indicates that some memory of this long
wavelength perturbation is retained, along with the four prominent
features that are present from the beginning (t=0) to the end
(t=1.9ms) of the problem.

One question of interest is the effect of initial
conditions on the late time evolution of the mixing zone. We carried
out a number of calculations with different interfaces, some of which
are shown in Fig. 25. Cases A, B, and C have the same combination of
wavelengths but with amplitudes multiplied by 2 and 4
respectively.( The evolution of case B was shown in Fig. 24). Case D is
similar to case B except that the signs of the various amplitudes are
reversed and, in addition, we do not suppress the perturbations near
the walls. In Fig. 26 we show how these 4 cases have evolved by the
end of the problem.

Fig. 26 suggests that while the detailed shapes of the
interfaces differ in these 4 cases, the total width of the mixing region
is a relatively weak function of initial conditions. Some of this
dependence comes from our highty restricted definition of L, which
we take to be the maximum distance over which one of the gases has
penetrated the other. For exarmple, in Fig. 26(d) helium has
penetrated to a height of 43.5cm, while we find air bubbles all the
way down to 34.0cm, so L=9.5c¢cm. while for Fig. 26(a), which started
with an amplitude 4 times smaller than case D, we find L=5.2cm. The
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advantage of this definition for L is that it is well-defined and easily
obtained from interface plots. An alternative definition for the
mixing width is to average laterally over the concentration fraction
(CF) of the two gases and take the vertical distance over which the CF
of one of the gases falls from say 95% to 5%. instead of the 100% to
0% used in our definition of L. The choice of £5% CF may appear
arbitrary and will ultimately be dictated by the experimental
resolution with which average concentration fractions can be
determined. Of course the disadvantage of using our 100% - 0%
definition is that it includes all bubbles, no matter how small, down
to the resolution of the grid. One might argue, for example, that the
air bubbles in Fig. 26(d) carry so little mass that the penetration into
helium reaches down only to 36cm and the effective mixing width
should be taken to be about 7cm.

To set up a sharp interface between two gases a
thin membrane will be needed. This s not included in our
simulations. While the relatively ‘arge single and double scale
perturbation experiments are not expected to be too sensitive to the
presence of a very thin membrane which disintegrates as the shock
passes through it, small multi-scale or random perturbations may be
substantially affected by the presence of a membrane. In Refs. 8 and
9 a thin flat membrane with no imposed perturbations was used to
separate the gases. This is probably as close as one can get to 1D
motion, though small random perturbations on the membrane will
eventually seed perturbations large enough to grow upon subsequent
shocks. Our present computational capabilities, however, do not allow
us to simulate such experiments: the membranes are 0.5-1.0pm
thick, so that the initial seeds are probably of order 0.lum. Our gnd
resolution is about 0.lcm, 4 orders of magnitude larger.Such a coarse
mesh is required to finish the problems within reasonable CPU time,
1.e. 10 - 15 hours. We are forced to considering relatively large
amplitudes. The conclusions derived frormt such large amplitude
simulations may be valid in experiments where shocks generate
vigorously turbulent flows.

From multi-scale perturbations we now turn to
random perturbations. The position of the interface at each (lateral)
zone is varied randomly around the nominal position, which is 60cm
for the air/helium combination discussed in this subsection. The
variations are done by pulling out a random number between 0 and
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1, multiplying it by a constant amplitude , typically O.lcm, and
adding the product to the 60cm. This is repeated for each of the 80-
100 lateral zones that we use in our simulations.

The evolution of a random interface is shown
in Fig. 27. It is a complex evolution characterized by two apposite
trends: on the one hand we see bubbles merging together and
forming larger structures of the order of 1-2cm, on the other hand
very small air bubbles, about O0.lcm which is the resolution of the
grid, separate from the large bubbles and "fall” into the helium gas.

Before studying how the mixing width evolves
as a function of time, we address the issue of how it depends on
initial conditions. In Fig. 28we show 4 different shapes at t=0
labelled A, B, C and D, and in Fig. 29 we show them at t=1.9ms.
Interfaces A, B, C were generated with the same sequence of random
numbers multiplied by 0.05c¢cm, O0.lcm, and 0.2cm respectively.
Interface D also had an amplitude of 0.2cm, but in this case we used
the squares of the random numbers multiplied by -1.

The two opposite trends mentioned above,
very large bubbles next to very small ones, are present in all cases.
Comparing C and D, the shapes of the two interfaces at late times are
different, but the total mixing length is not too different. Comparing
A, B, and C, we see that there is more sensitivity to the amplitude of
the initial perturbations than to their detailed shape. Again some of
this sensitivity comes from our definition of L which includes the
smallest resolvable bubbles determined by the resolution of the grid.

In Fig. 30 we show the evolution of L for the
two cases where the initial amplitudes are 0.1cm and 0.2cm. Also
shown 1n Fig. 30 are two additional curves, for the same 1initial
conditions, where we increased the shock strength to Mg=1.7. As
expected, the mixing increases as the shock gets stronger. The ID
motion of the interface for each shock is shown in Fig. 31. Since the
test gas was kept the same, viz. 60cm of helium, the air/helium
interface sees many more reflected shocks in the M=1.7 case.

Fig. 30 suggests that L(t) grows approximately
linearly with time in between shocks. As a shock goes through the

mixed region it compresses it and immediately after the passage of
the shock L(t) grows with time. Since the first shock sees a negative



Atwood number, there is a phase reversal whereby hills and valleys
turn into valleys and hills respectively The reflected shock(s) see a
positive Atwood number so there is no phase reversal, and the drop
in L(t) is caused only by shock compression. Of course the opposite
sequence occurrs with a heavier test gas as discussed in the following
subsection on air/SFg, and there the phase reversal which takes place

upon the passage of the reflected shock is much more dramatic.

A stronger shock generates more mixing. If
we assume that L(t) grows linearly with time, then we can compare
the growth rate dL/dt for a fast and slow shock: with the same initial
conditions, Fig. 30 suggests that the growth rate triples as we go from
M =1.2 to M =1.7. Since the jump velocity Av also triples (from

l4cm/ms to 42cm/ms, see Fig. 31), it is consistent to assume that
L{t) ~(Avt)™® with n~1.

There 1s a qualitative change in going from the
weaker to the stronger shock. When the shock is weak we see that
L(t) depends on the initial amplitude L(0), particularly before the
second shock arrives. With the stronger shock there is less
sensititvity to L(0). It will be interesting to investigate this trend
experimentally and with further calculations

B. Air/SF

Multiscale and random perturbations were
set up the same way as described above, except that the test gas was
replaced by SF¢, 30cm long. Since SFg is about 5 times heavier than
air, the first(second) shock sees a positive(negative) Atwood number,
exactly the opposite case from helium. Again we see that
perturbations grow following each shock.

Fig. 32 shows the evolution of a random set
of perturbations with a peak-to-valley amplitude of 0.lcm. The
reflected shock hits the interface approximately 2.3ms after the first
shock, by which time the interface has moved about 22cm. The 1D
motion of the air/SFgq interface for this shock (M =1.3) and a stronger

shock(Mg=1.7) are shown in Fig. 33, along with dashed lines showing

the extent of mix for the case where the amplitude was doubled to
0.2cm.

2
2



To study the dependence on initial conditions, we
show 4 interfaces in Fig. 34 labelled A through D. The first three
cases are random perturbations with total amplitudes of 0.05cm,
0.1cm, and 0.2cm (the evolution of case B was shown in Fig. 32) while
case D is a multi-scale perturbation of maximum amplitude 0.2cm.
Fig. 35 shows how these four cases have evolved by t=3ms. There is
some dependence on the amplitude and shape of the initial
perturbations, but not a strong one.

It is interesting to compare Figs. 29 and 35, the
helium and SF6 cases respectively. There is clearly more finger-like
structures in Fig. 35 than in Fig. 29. This is related to the fact that
shocks going into a lighter gas tend to create finger-like structures,
while shocks going into a heavier gas generate mushrooms. This
characteristic of shocks, already noted in Sect. II, is perhaps best
illustrated in the evolution of multi-scale perturbations in SFgq

which we show in Fig. 36. The mushrooms are quite clear after the
first shock; after the reflected shock, they evolve into fingers, as seen
in the last snapshot.

Another difference between the helium and SFgq
cases emerges when we study the time evolution of the total mixing
width L, which we again define as the maximum distance of
interpenetration. In Fig. 37 we plot L(t) as a function of time for two
different shocks (Ms=1.3 and 1.7), and two different initial L(0) in
each case: 0.lcm and 0.2cm. There is again some dependence on
initial conditions, and the growth s not quite linear in time,
particularly for the weak shock. As expected, the growth rate is
larger for the faster shock. If we again assume that L scales as (Avt)n,
then the power n is less than 1 and close to 2/3, as suggested by C.
Leith10

These two differences, mushrooming and the
late time slowing of the growth, may be connected - clearly, air that
is mushrooming, i.e. expanding laterally into the heavier SFg will
penetrate less than fingers of air pushing through the lighter helium
gas. We must remember, however, that mushrooming and fingering
are essentially large scale phenomena and their appearance in our
random perturbations may be a result of the coarseness of our grid.
For the same reason we feel that these calculations must be refined
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using a much finer grid before drawing any detailed conclusions
about L(t).

As the second shock passes through the interface,
L(t) drops just before it resumes a more vigorous growth. The drop is
caused by the combined effects of shock compression and phase
reversal, signalling that there are large scale structures in the
calculation. At present we have no simple analytic description of how
L evolves after the second shock. The compression of the mixed
region, and more importantly the minimum width Lp;, 1t attains
because of phase reversal, depend on the scales that are present in
the mixed region. If both large and small scales evolve from initially
random perturbations, as suggested in our calculations, then the
description can become quite complicated. If the mix is "atomic”, i.e.
all scales are much smaller than the width L, then phase reversal
may be ignored and a simple description like a power-law may be
possible.

There are two further differences between the
helium and SFg cases. Comparing Fig 30 with Fig. 37, we see that a
reflected shock has less of an effect on the growth rate in the case of
helium than in the case of SFq. The main reason is that in helium the
reflected shock is about 50% weaker, as measured by Av, than the
first shock, while in SF6 the reflected shock is about 40% stronger
than the first. Even after taking into account this Av effect, it appears
that somewhat more mix is generated by a shock moving into a
lighter medium than into a heavier medium, at least for the Atwood
numbers of -0.75 and +0.67 considered here. Further calculations are
needed to determine if this difference in A is enough to account for
the residual difference between helium and SFg

C. AirFreon/Ailr

We consider the same set up as in Sect.IIC: 4cm
thick layer of freon gas whose lower interface is 60cm away from the
end of the shock tube. The layer i1s surrounded by air both above and
below. A Mach 1.2 shock accelerates first the upper interface, then
the lower interface, passes into the lower air section, reflects off the
end wall, and crosses the freon layer a second time. In Sect. IIC we
discussed the evolution of single scale perturbations on either or
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both interfaces; here we describe the evolution of random
perturbations.

Fig. 38 shows the case where only the upper
interface had initial random perturbations with peak-to-valley
amplitudes of 0.lcm. Fig. 39 shows the case with perturbations only
at the lower interface, and Fig.40 shows the case where both upper
and lower interfaces are perturbed Unlike the case of large scale
perturbations, small scale perturbations on either interface appear to
evolve independently of the other interface, which is expected
because the random perturbations have extremely short
wavelengths, much smaller than rhe average width of the freon
layer, so interface coupling is less effective here.

Another observation concerning these
calculations is the following: while early on the perturbations at each
interface evolve differently, after the reflected shock both interfaces
develop similar perturbations. This s clearly seen in Fig. 40; in the
last snapshot the total mixing width at both the upper and lower
interface is about 2.7 cm. Note that the freon layer is almost
completely intermixed with air, in the sense that one cannot draw a
horizontal line across the shock tube without intercepting some
pockets of air.

This intermixing increased somewhat by
doubling the initial amplitudes to 0.2cm. In Fig. 41 we compare this
case with the other three cases discussed above.

A three fluid experiment was reported!! in
a constantly accelerating system, and the evolution of the mixing
layers with initially random perturbations at each interface was well
described as being independent of cach other until the middle layer
was completely penetrated. In those experiments an intermediate
layer of density p, was chosen so as to minimize mixing across the
two adjacent fluids with a high density ratio pj,p3. The density pj of
the intermediate fluid was chosen by py = (p|p3)!/2 as suggested by a
linear analysis!?. It will be interesting to see if the same stabilizing
mechanism of density gradients is effective for shocks. In fact, in the
next Section we will describe an e¢xperiment in which a continuous

density gradient is set up and the growth of the small scale scale
perturbations appears to be suppressed.



As mentioned earlier, there is a large variety
of experiments that can be carried out by using different densities in
the three fluids. We plan to pursue them at a later date.
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V. COMPARISON WITH A RECENT SHOCK-TUBE EXPERIMENT

We hope that most, if not all, of the numerical
experiments reported 1in this paper will be carried out
experimentally in the near future. In this Section we describe a
recent shock-tube experiment> carried out at CalTech and our
simulation of it. The test section consists of SFg gas 10cm long with a

cross-sectional area of 11.3cmx11.3cm . A metal plate, which initially
separates the test gas from the upper section of the shock tube filled
with air, is pulled out to the left, as viewed by the camera, just
before the arrival of the shock As a consequence, the gases are
premixed to a thickness of about 1.2cm, and two gravity waves are
set up: one on the side of air and one on the side of SF¢, the first one
travelling faster than the second. In our simulations, shown in Fig.
42, we set up a premixed layer in which concentration fractions of
the gases change linearly over the 1.2cm distance, plus two bumps,
each 2mm high and 3cm long, at the air/premix interface and the
premix/SF¢ interface, representing the two gravity waves. The

upper(lower) bump is 1.5cm(1.0cm) away from the left wall . There
are small amplitude(0.2mm) random perturbations throughout the
premix layer.

Fig. 42 shows our initial set up and its
evolution as a Mach 1.3 shock impinges on the diffuse interface. The
isodensity contours shown in this figure are in good agreement with
the shadowgraphs reported in Ref. 5. In particular, the structures
near the left hand wall are fairly well reproduced in our simulation.
In the experiments another structure appears near the right wall
which 1s not found in our simulations, and it is not clear if it is a
boundary layer effect or a 3D effect . Another possibility is that the
concentration fractions are not identical near the two walls: because
the metal plate is drawn to the left, the gases near the right hand
wall have had more time to premix than the ones near the left wall.

It Fig. 43 we show a comparison of the
experiment and our simulation.

From the last snapshot shown in Fig. 42 we see
that the total mixing region is about 6.4cm thick, extending from 2cm



to 8.4cm. If there were no perturbations, i.¢c. no bubbles and no
random perturbations, the thickness of the 1.2cm premix layer
would end up only 0.5cm. A calculation with only random
perturbations but no bumps reached a mixing width of 3cm.
[nterestingly, when we doubled the initial width of the premix layer
to 2.4cm in this last calculation , the ftinal thickness was somewhat
less: 2.8cm. It appears that the longer density gradient has such a
stabilizing effect that an initially wider premix layer can end up
thinner than an initially thinner premix layer.

In Fig. 44 we show isodensity contours, at t=5.7ms,
of the three problems discussed above: 1.2cm premix width with
bumps(Fig. 44(a)), 1.2cm premix width with no bumps(Fig. 44(b)),
and 2.4cm premix width with no bumps(Fig 44(¢))

Let us point out an interesting, albeit small effect
on the mixing length near the right wall in our calculations.
Comparing Fig. 44(a) with Fig. 44(b), we see that L near the right
wall is 20% smaller in Fig. 44(a) than in Fig 44(b), being 2.4cm and
3cm respectively. It appears that the vortex motions created by the
large bubbles in Fig. 44(a) have rchbed, by entrainment or
otherwise, some of the mixed mass near the right wall

Figs. 44(b) and 44(c) illustrate the stabilizing
effect of density gradients meniioned above. It is somewhat
surprising that this effect, well known 'n the linear RT problem,
appears to suppress also the highly non-linear process of mixing at a
shocked interface

Measurements are in progress at this time to
determine the concentration fraction of gases across the premix
layer. This was assumed to be a linear function of positon in our
simulation. Although we have not verified explicitly, we feel that
small deviations from the assumed linear profile would have little
effect on the evolution at late times. Of more importance may be the
assumption that the concentration fraction was wuniform across the
shock tube, in particular near the right and left walls. Even after
waiting for the gravity waves to die out « feft right asymmetry may
persist due to the fact that the seorarating plate leaves the right wall
before it leaves the left wall.
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VI. REMARKS AND CONCLUSIONS

In this paper we have studied some of the
rich phenomena that arise at shocked interfaces with various initial
perturbations. The complexity of those phenomena, and in particular
the fact that we are dealing with compressible fluids, practically rule
out analytic approaches and hence require direct numerical
simulations. We believe our calculations will be useful in planning
future experiments, both physical and computational, out of which
we hope to get insight into the physical processes that occurr at
shocked interfaces, and insight into numerical techniques for solving
problems in shock hydrodynamics.

Here we mention some of the tests that
we carried out. The artificial viscosity introduced in the code for
numerical stability also slows down the fluid motion to some extent.
This is particularly severe in regions of the problem where physical
scales are resolved only by a few grid zones. For example, in Fig. 45
we show the air/freon/air problem (Fig. 19) with a resolution of
0.14cm and 0.07 cm. Not only there is more small-scale structure in
the case of high resolution, but the mushrooming freon heads extend
deeper into air, and the necks are thinner. It could well be that, with

even higher resolution, the necks will snap and the heads will
separate.

We carried out similar zone-doubling
studies for the random perturbations also. As expected, the mixing
region increased, but most of the increase was due to a few narrow
jets which penetrated deeper into the lighter fluid. The penetration
into the heavier fluid was much less affected because that side
consisted of wider bubbles (see, e.g.. Fig. 32). Keeping the same
number of zones (about 100x250), we varied the shape of the initial
random perturbations, and found that i1t was again the mixing into
the lighter fluid which changed (by about 16%) ,while the mixing into
the heavier fluid remained practically the same.

The above exercises suggest that the
mixing into the heavier side may obey some simple scaling law,
while the mixing into the lighter side 1s more susceptible to changes
in initial conditions, etc. As obse-ved bv Andronov et al.8, the mixing



into the lighter fluid is wider than the mixing into the heavier fluid,
and our calculations also show the same effect (see Fig. 31).

The overall mixing length L is the crudest
description of the mixing process. At the next level one may set L =
Li + Ly, where L{ and L, are the mixing widths into the heavier and
lighter fluids respectively. The only drawback to this decomposition
is that it requires computing the unmixed, i.e. 1D position of the
interface because it cannot be measured experimentally (this is not a
problem for incompressible fluids - see, e.g., Ref. 13). This is an
acceptable price to pay because the 1D positions can be computed
accurately. We analyzed some of our random perturbation results in
terms of Ly and L, , and found that indeed ., > L, and that L, was
more sensitive to initial conditions. In the future we hope to carry
out calculations with higher resolution to see what scaling laws, if
any, describe L and Lo.

Going beyond this decomposition into L{ and
L,, the description of turbulent mix quickly becomes extremely

complex: eddies of all sizes appear to be present, and the velocity
field is quite complicated. The usual description of turbulence is in
terms of the spectrum of turbulent energy. but the code at present
cannot readily extract that information.

As an example of highly developed turbulence
generated by shocks, we show in Fig. 46 isodensity contours and
velocity vectors for the 60cm long helium test gas, 1.9ms after it is
first hit by a Mg=1.7 shock. Several reflected shocks have passed by

this time, and the total mixing width is about 13 c¢m, i.e. 130 time
larger than L(0) which was O.lcm (the evolution of L for this case
was shown in Fig. 30). Several vortices are clearly seen in this
mixture of air and helium; large scale motion, almost as wide as the
shock tube, is accompanied practically everywhere by very small
islands of dense air bubbles floating through the mixture. Even with
the relatively crude lmm wide zoning, the code took 16500 cycles
and close to 6 hours on the CRAY/XMP to get to this time.

In 1D, i.e. without any perturbations, the
sharp air/hehhum interface at t=1.9ms is about 17cm away from the
end of the shock tube. Since the mix extends from about 9cm to
22cm (see Fig. 46), we conclude that Ly = Scm and L, = 8cm.
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Finally, let us mention a few problems that we
ran primarily as a check on the code. With no imposed perturbations,
the interface remained flat well into the times that we were
interested in. lmposing perturbations between two identical gases,
I.e. Seting Picgigas = Pair AN Yiesi_gas = Yair» W€ saw no growth - nor
did the code diffuse the perturbations.

To study the dependence on the Atwood
number A, we made a few runs where A was reduced by a factor of
2. The adiabatic index y was not changed. We saw approximately
linear behaviour with A, although in one case (helium test gas with
random perturbations) the suppression was more than a factor of 2,
suggesting a stronger dependence on A.

Density gradients can be viewed as
effectively reducing the Atwood number at an interface. For a
definitive proof one must compare experiments on the same system,
one with a diffuse interface and one with a sharp interface. Such
experiments have not yet been carried out (they soon will be), but
we did a simulation and found at late times the mixing width was
indeed somewhat larger when the initial interface was sharp. This
may be a clue to understanding how the late time evolution of L may
be independent of initial conditions: perturbations grow slower in the
large premix case, giving time for the faster growing perturbations in
the small premix case to catch up.

As mentioned in the Introduction, this is
essentially a work-in-progress report. We have simulated a variety
of possible experiments in a shock tube such as the one at CalTech.
These experiments require either a thin membrane or a separating
plate between two gases, and the CalTech facility is equipped with
both. New experimental results will soon become available. We are
encouraged by the good agreement between our simulation and the
reported air/SFgy experiment which we discussed in Sect. V. Future

experiments and simulations will shed much more light on how

perturbations evolve and how twc fluids mix across a shocked
interface.

31



ACKNOWLEDGMENT

During the course of this work I have benefited much
from discussions with Gene Burke, Vivian Rupert, Brad Sturtevant
and Martin Brouillette. Bob Tipton has often helped me run the code.

REFERENCES

1. R. D. Richtmyer, Commun. Pure Appl. Math. 13, 297(1960).

2. E. E. Meshkov, Izv. Akad. Nauk. SSSR. Mekh. Zhidk. Gaza 5 ,
151(1969)

3. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability,
(Oxford University Press, London, 1968).

4. Energy and Technology Review. UCRL-5200-83-3, March 1983,p.
38.

5. B. Sturtevant, to be published in "Shock waves and Shock
Tubes”, ed. H. Gronig, RWTH, Aachen, Germany(1988).

6. K. A. Meyer and P. J. Blewett, Phys. Fluids 15, 753(1972).

7. K. O. Mikaelian, Phys. Rev. A3 1, 410c1985).

8. V. A. Andronov et al, Sov. Phys. JETP 44, 424(1976).

9. S. G. Zaitsev et al, Sov. Phys. Dokl. 30, 579(1985).



33

10. C. E. Leith, "Acceleration-Induced Turbulent Mixing: Model One”,
LLNL working paper, August 1985.

11. K. D. Burrows, V. S. Smeeton and D. L. Youngs, AWRE Report
022/84, 1984,

12. K. O. Mikaelian, Phys. Rev. Lett. 48, 1365(1982).

13. K. I. Read, Physica 12D, 45(1984); D. L. Youngs, ibid 12D,
32(1984).






l ihi’clk l i\——/|SlngIe-scl;\u;\/|ln9Ie-lnleriace

ot A

Alr
Double-scale/Single-interface
Single-scale/Double-Interface
Test gas

i—

Multi-scale/Single-interface

Muiti-scale/Double-interface

Fig. 1



cm/ms

-12

-16

Air/hetium (60 cm)

I 1 R ]
r_ ulnlorhco
M. = 1.2
—
(72}
E
- E
[$)
—~
(a)
1 | |
0 1 2
t (ms)

Fig. 2

+2

Alr/freon (30 cm)

B - I !
Uinurhco
M. =12
o —T -
-2+ —
-4 —
-6 —
(D)
8 1 ] [
0 1 2 3
t (ms)



&1

[

e

“3

| 4
S 4
PUrara Y i L 'l
2 - L] ] 10
time = 1.1
MM ShA A B SRR v

time = 0.7

vy vy T g ML |
&
y ]
s I 9
. 1
s F k
N 1
Ry 1
S0 b
\l = P b
-8 1
LIl o 1
P DU e § A 1 1
[} 2 . s . 0 2 . 1o
time = 1.5 time = 1.9
Y Y 4 Y v L v
e
S J
) b
0 1
1} 1
10 1
| 1 n AL ” A A N
o e ~ 13 L] 0 2 ~ 10

Fig. 3



bubb i e

sSpD ke

{uy

!

4
I
i

% \ y
& /

L

bubb I/e/
. e——
sp i ke

ﬁ A
| / H
rpkpphﬁkkk;rrpvﬁp} oo s b

— < . y I

A‘jﬂjijjﬁjqj:—A.ﬁ:dﬂj :_ﬂﬂqﬂﬁ_\_j;\¢_
]

*ﬁQAAA;LAu

1
1L
i

fo—

-

Iy
-

[

B S S N N G G

Fig. 4



42

40.

38.

36.

34 .

] L . L o L { ' l A J L h 1 L J L R fl’ L L4 LS L]
.
‘ o
9 L
g L
3 ;
L o ]
! \ / -
3 L
g / 1
d -
3 { o
= ' c’ -
b .
! | { )
3 o
- -
o
[ i
P -
-
r q
A A& J_L A __B a B l A J - A a l 2 A a2 LJ | N . | i
0. c. L . 6. 8. 10.

Fig. 5



+0.

N

0

BN
QU

l"'"[ﬁifr"".'ll'r' U1Tr

DD B D®DDDD

L T U U I

r'1tfr11t—rriillr11lrl""l'

£ £ TOINAALAN



T

b AN S e

P Y

A

Aded M aa a L o

4o.

38.

[}
=

PUEPE

Acd o d on s s d oo s a a )
Y.

L1l

Fig. 7



LL]

s

uy

T T

rTYTYY

ad s doa s s ol o a o o b aasalda
2 " 6 ] 0
time = i |
v Y . g T Lan A
b -
o -

aaaalaaaada s aadasaanlaa

o “ 6

a

58

. I e
PP PTOWY DWEE WD

L3

o 2 ~ L] a 10

Lime = | 5

& -y TV T rTY
CE]
LX-4

o aad aa s b aaaaldaaa sl

o a “ 6

] 10

T Ty YT T Y rTrY T Y Y

-~ -
.2 <
s I h
PP Y OO W e e
.
[ 2 . s ] 0
tlme = | 9
\EM S s m o o o e o a0 o
CH
0
19
38
37
n 2 “ L L} m



51
sz |
s "

N SYaYavYa'

Y Y Y T YT T T T T e Ty

s3 P <
0 b
. FTTE PUUTE PUTEY ST TP e
L] 2 y [ L] 0
Lime = 7.1
_y YT YT YT YTy

-6

e

PP I U N

Prwe &

? 5 & [ 10

iime = 01
&0 T T YT YT Y T
HGL h
-mL <
PP PUTT BUPTY PUEw et
an
] 2 . 5 (] 10
Limg » 1.5
w YT YT YTy
w P <
| (‘\’V\/\ ‘
~?L 1

LN

so. I h
aasalaaaslaaaalaaaalas

19

o L4 “ 1] a ‘o

k13

30

we

w0

8.

Lime = 0.7

T YT T T Y YT Y

Ty

PUTY S TPRTY Py rerews

2 .. e. LD 0.

time = 1.9

AL n B0 A0 an ot B0 N Ty

[KaAl

;
' |

f
e

0

"

N

Parar A b aa s

] 2 “ & 8 o



Vime v 003

T Y YTy Y T Y
L L
- <
o 4
- E
o -

Q

 svarbsaaal

Y DWW e U

2 B

L] L] 10

Fig. 10




ome i (ime = 0.2 time = 0 6
B SMILIN I 0 A0 G0 n 000 0 B0 00 BANMEM AR =8 T YT YT T T T T T Y “6 YT T T T T T Y
- r w P r A <
o L - P - w I e

L 4 s0 I 1 38
- b va I - = r -
e e | aacach aa s sl oa s FUPEPEPE GrErarare B | T e FPWeE rerewa | adaaaadaa
13 I
o 2 ] & ] 1o L} 2 w L] a 10 0 2. “ L] [} 10
time = |.0 time = |.3 i'me = i 5
TP YT YT Y Y " S an a0 & an i o an g T T o, [TVVTTYTTTYTTTYTY v~y

32

10

28

26

kel o a boa o

asaatlsasal

.

Fig.




32

L))

2e

T

YTy

L 4
- p
PPN WA U Y DWW e
H “ 6 [ 10
ae = '@
MARAR LI B Bt o b e S e ans T
- L

" Lo a

aad oy

s sl

29

28

26

2%

r2

Viae

Ty

T

T Y

asaadasastaanssdaassdan
2 A L] L] o
time 29
LAMAD ELEN S e g and YTy
o E
3

—

MW YT Wt

Fig.

[

12

a2

21

T YTy YT T YTy
-

-

-

-

PO W W

P Pwarere

& ) L] [ ] e
timg = 3.9
MMM o e i oy ¢ YT




C

-

(@]

HHHI:’T[HHHHTIHWHHl”lllllIIIIllmﬂyII\]FTIW[WHWWHHHTH]WHu‘ﬂ’TﬂT

O

o g o

N

.

= |

r

!
i
|

[

Rl e o

/

ILLllIlllIllllIlIll]lllllllUJllllUlllllIllllllllllllllllIllllillllI[llllulllllllllllll




[

. me

i P BN

Al

P S S

=

10.

time

- n Q

mp

o s b oo A a a b s

o

14

Fig.



Shock

ARRR

Alr

Freon

Alr

-

?4cm

b 60 cm

70

Fig.

I ] 1
Position vs. time




66

Y

82

iy

w0

16

[ [
S
[
T
Y Brarurare | aac b oA s 4
9 2 - & ]
time = 28

PEPE N B U |

0 2 N

60

"8

a6

8

18

32

Cime
T T T T Y T Ty
E
P
q
P

aaaatoasaal s asl acsss

2 A 6 L]

Lime 3.5

LA i S o S o A S S S S JEL SIS RN BN SNS
e

32

iime = 2.3

g

BARAR S0 S0 SM A Sn S0 A SN SRSN S

AR SRR SRR S S

aaada e ol aaaadaaaal
2 - L] a
Limg = 4.0
Y T Y T
L
L
O S T O T
< ~ & 8




62

i

-e
AR S e s o 2 2t R
4
L
rare | ——_l et )os 42 &
2 . [
t'me = 2§
T MR SRR e o0 an o oo
<
P
L
4
o s n ol 0. Aassn ol .
2 . 6

A § RELA A S Bt o

LA e |

w o

sz P S | v ATy e

¢ 2 u L] L]
lima = I 5

Far R

e RN

PP P

Fl

u

L] L]

L]

-0

N e weary N

sl s

pi:]
o 2 . L]




cE

[

52

PPN |

LR AR S S0 S0 an an ¢

T YT TTY

PEPEPS WA S Srarary

2 “

N e o n o S B B AN SR

PR Werarere |

3

Ly

K

™

Ty YT Ty

Y ey |

T T YT YT T Y

wa MM an B S S S mn B SR Sn A BR AR AR SN |

e

Py Lo aaa b v a o aa o ba

a 2 “ e 8

time = 40

0 AERA SN SASN AN Sn S0 SN SN SR ELSAEMEME |

aaaboaa s o boa o sal s o s |

2 « & )



veri t-0 A

T T YT -y T T rYrry v T T T

55}‘ 1

L 4 w 4
PUrarar A 1 P | PUPUPEPE e - - A oo L 1 3
B B e 8 B : . 6 . a B N [ .
e ey m PO
T Ty vy T v T T T MR B
w I 1
[ ]
16
S
I
F 3
se
i 4
wk 1
al P SRR | 1 - I A Ao A P A P
B . 6 8 o B - 6 ° o 2 - s 8



\ome = time = 0.0
T YTy ™ €2 YYTVTTYTTrTY Ty I an o Sn e i S an 2n e o S AR e R AN
s
B h s0. [ J
=2
W s F 4
w0 P
I 4 o P -
wa
aad s saadaasa s s o - aaboanablaaaald s aoad anaadaas s daoaa o s atoa
[ 2 . ] a ] 2 " [ ] [ 2 “ [} [}
Vime = 1 Limeg = 1.5 time = 1.9
T YTy N o o YT Ty T Y T

ue

anad o s o boa s a sl s " raaadlasaaboaaslasaal aseataasalaaalaaaala
e v € [:] 0 2 . L] 8 0 a " & f

-



= 0.0

fu YTTYTTTTCYT

!

T T T YT

50

LN o

- aaaa b oo ol aaa ol o aaa

0 H v s (]
Lime = i
T \EB BN AR o S g

ot

S

aheaa oo b o s ol s

A

A

2

N

6

60

a8

L]

.2

time

=0.2¢

LRI S0 Ah S o o BB SN B AR BN SR

PP WS DWW |

2

time

L ] e

=1 5

\J

DA 2D 20 Sn o on o Ba e S an NASLEA SR AN BN ARG

0 o]y

Fig. 21

Lime = 0.7

———r T Ty
I 4
a2,
o }
N 4
aaaalaasaloaaalaaas
3 2 . [ ®
vise = 1.9




4]

62

60

58

36

Fig., 22

“wa.

w8

L

e

V=0 0

A S S LS AN A

rdm

Ty rr Ty ey

- 1
hdedadd a s a o o aa doaa a o b s
e “ -] 8.
Lol |
V—r—— T
o -

PP

PP B

| P

1=0 7

62

ol

56 .

vy

Yy

T T TYrYr Yy

PP WO R

Laaa st s

2.

L 6. 8

“a

AR S S A A A

| BREAARARE EAEA AR |

8

10 7

ASELZ S0 U SN Bn on Sn S SN An Sn MDA G AN BN
o -
s2. F -
so [ J
"N 4 b

PPN PP W BEPEr W e La
0 2. “ ] e
1=1.9
ASE S0 AN BN A un n AR SD AR SN Sn SN SR AR S SN BLSR

aaaatd oo aal

aaaa b a s sl o s

a e

“ 6

]



E2

R0

58

8.

un

we

AR AN B B S0 e Sn S SN o ¢ T g ™

aaasdaa s a b aaaa ko aaals

-4 “ L] -]
time = |.1
MERANLAR SN SI A Sn S an S any T v ) B

be

L-18

36

B4

~6

IR R S S B |

Ty Ty

aaaaldaaa sl

r
NPT U T W e B
e bl L] ]
Lime = 'S
man -y ™~y T

aalas sl

2 “

] -]

Fig. 23

L1

7T Ty

Y

M PR T W La
2 “ ] e
lme = 1 9
B S0 2 o an o A SO AL SR AR R EASMJSN B

Lo aaaldaaasloas

2 - [



B

52

&0

LL]

LT}

wa

[EEY R

YTy -y
2 E
s <
o o
ke baaa d oo a o boa s s
0. 2 Nl s e
Lo
ML AN S on on o on Snon an gy o om an o e 4
- 9
PP e | U Y adoa
2 “ 6 8

62

&0

£l

8%

p 1)

TV Ty

Ty

PSP WO awwra

2 “ L] L)

B AR D b o Bo n S S 2n Sb AR SRAN BRLERAM SN Ml

LA

8.

50

-8

w8

w2

~a

8

iae s N7

T T Y
-
4
aaaab o s oo b o a o b aa aa
2 . LB ]
timg = | 9
—r—r-v-y \SRAE SLM non sn o andn ey ang

FEPEPS SFUPE i RPN urN Y

2

“ 6



6.45

"T“Y'WTT_IT-TTTYT“(#T'['TTTWT_T LA SR S U R N A T B A S A

J
j
.

o
o
low ]
€ LI *_'_Tq

TTTT \]IlleT_T‘\TT
114 ]_l"LllllLlllJ i1} lIllllLllLlil |

N

Ll_ll_LllkilJLlll

9.

610 T
10’ B
605 VLllLLlLllJ_lJ_lJ_Llil_l_ll_lLl_ll(LL llJLiiLlllJ_LlllllllJ_lll__l_LllllillJllLLllllllJlLlli lLJJLJ_Jl-i
o — ~ ~ - v <o ~ oo
i X FILE XMIN  XMAX  YMIN  YMAX
A*MWA4 0 900400 539+01 641401
B*MW?2 0 900400 628+01 632401
C*MW3 0 900400 616401 624+01
0

D*MWH . 900400 607401 612401
Fig. 25 15:23:2505/12/87 d



w4 Time = 1.9 M2
CYCLE = 11333 OT( 64, 44) = 2.03294E-01 CYCLE = 8965 DI(101, 62) = 3.18673E-01

4 4 TYTT Y Y T T Y T Y T1wjﬁ1—r—r1ﬁ*r1|]1v*r1|7'—levvw—rJ 4 4 Wm-ﬁﬁﬁ—rrﬂ-ij—rmmﬁﬂ—r‘rﬁﬁmﬁ—ﬁvﬁ
1 1

4.3 bR 7

)

Q

@5
q
N

0

36 4 %>. ‘E:’ﬁ) »
] ¥ |
3.8 P I ?
b
4
3.ar /] —': YAl /-/_)) ‘i
o' / ) BT ]
3.3 AIJAlAJ;J.AL l.JJ | PN Y i S U - !‘_.A_A_L_I_LA_LJ._A.- - , - _L,_L.l_s._a..a_x._L_a_L_a._a_L_a_&-t—Aj
o - ~ - - " © ~ © - o - ~ - - " © ~ © I
wINP 0.000 9.000 33.000 44.000 KNMAX = 213 JNMAX = 8° w (NP D.00C 9.000 33 000 44.000 KNMAX = 273 JNMWAX = 87
PLB PLB
Mw3 MWE
CYCLE = 14975 DT( 92, 42) = 1.25739E-01 CYCLE = 11681 DT( 95, 13) = 2.89401¢£-01
4.4 vrvlr111111ﬁ11wvv|]11ﬁ7vv7r—[1rvv[ﬁvvﬁluvﬁ-‘A—ﬁﬁﬁ——r—r—v—wﬁ—ry—w-w—v—'—rﬂwﬁ—rrﬁ-ﬂ—rﬁﬂﬂ—wﬁTT* |
]
st 3.k b
]
A‘ZL . 4.
]
3.

3
3.8 L)
37 3
° . ]

LN
& - * 13

387

LY 3 -. q) ] 1™ 4
> C 1 sof 1) 1

LEE ), TN N U T SO S N T

- - - 13 PRSI SUUITS ISR U BN ST
< - ~ ” h v © ~ © o - ~ N - - - ~ < ®
:§=p 0.000 $ 000 33.000 44 000 KNMAX = 213 JNWAX = A wINP 0 000 9.000 33.000 44.000 KNWAX = 213 JNMAX = &1

- PLE

Fig 26



Bu

&0

=8

w6

we

M S AN O B n an aan o

T T T Ty

saa b aaa boa s s o) o aa

2 - [ e

Ceme =,
—T YT Y r T r 7T
aaaal aaaalaaaalaaaala

2

“

60

58

56

3

CEN

w0

h L

Ty YT T Ty YT T Y Y T YT Y

aaaad aaaadaasal o sl

2 “ L]

aaaadaaaa ) aan loaa

2 - 6

Fig. 27

L3

az

30

we

“6

wu

38

lime = N.7

Ty | Gnan An S0 S0 SR ARLER RGN BRAM

-
-
a2 a b aa s s boaa st aida
2 “ [ ]
bimp = | 8
T T T T T T Y
<4

2 s ks aaabaaaalasasld

4 . [ L]




.

/! :
WWMMVWN‘—'Q
.40 = 7
E ;
SSt J
: :

N -
WW
30 = e
25 F E

TR '.—:-"*"—',—'—'ﬁ”r‘r‘r—ﬁ'wl-v‘r lAAASEAEAEEERNRERNRER R ""v—rTr‘T’TT‘V'T'ﬁ‘T‘rTTTr‘T‘T‘FTT‘I_r TTTTTTTT‘[TT‘T‘WTY‘%
! i

rs
on
TT_TT‘I—I:

[
<
T T
é

b E_ j
b
6.15 E» E
t :
c D ]
6.10
10!
6 05rULUllHilHYLUJMiKUJLuLbiLuLULLuJiuLUiLu¢U4Ld¢ULLMi”llHJlUJLULUl =
S - = - < o o ~ °° =
by X
A*MW34
BeMW3 3 Fia. 28
C*MW35 9

D*MW36



MW34 TIME = I-y MW33

CYCLE = 8133 DT( 87, 40) = 2.65408(-0" CYCLE =  BB32 DT( 88, 39) = 2.74816E-01
‘"'T'Tﬂ_Y_’-V_Y—V_"TY'_V'T"—T_F"ﬂ'_V—T—‘V_T—r_V']lvvrj‘vrwﬁ1'lvl‘1"'V l_l;‘rvrrrwv' |ERANAAASE SAARSASLES Bh AR ERIRSD S0 AN S0 SR EE DSRS0 AN Bt SNSRI AN AL RS
a3t 4 43 b

]
] ]
a2l 1 s2F ]

LN ) of - LN X

35 - 3.3 /) ]

LY o ﬁ - sS4 "é 1

o’ o'

33 [J.A.LJJ_LJ_A_L_‘LA_LJ_J_LJ_J_LJ_LL‘A_LL‘LA_J._L,J._J._J_J._A P O SN 3.3 LA—AJ-J-—LJ-—LJ—A—J-LA— 3
° - ~ " -« “ 6 ~ © » o - o~ " - n © ~ «© a
:i:? 0. 000 9.000 33.000 44 000 XNMAX = 213 JNMAX = B WINP 0.000 9.000 33.000 ¢4 000 XNMAX = 213 JNmMAX = 81

PLE
MW35 MW36
CYCLE = 10137 DT{107, 35) = 2.70732E-01 CyCLE = 10203 DT(110, 57) = 2.81953E-01
LN GLEM A0 e SR NS R A S SR S A SR SR AR SN SLERAEL S SIS SR A S B S R 7—1] 4 AV T YT )

4 a
3. 3.
)
3. 3 -
- o 0 * 1
o
3 s 7 o b
3 e ]
)
4
LIS 4 s 4
3 oaf- C B S 4 D 3
1¢' ’ 1o’ » ]
N L TN PR U P PN ST DU TR DS B SRR BT S SN DUUUE DU TS Y
= - ~ - - ") - ~ © - 3 - ~ " - “ - ~ © o
:::P 0.000 9.000 33.000 44 000 KNNAX = 213 JNMAX = [} W INP 0 000 9.000 33.000 44.000 XNMAY = 213 JNMAX = a
°LB

Fig. 29



L(t) (cm)

16

14

12

Alrmelium

}_

M. =1.7,L(0)=0.2cm

Fig. 30




=0

T 71 IT"I T T TT“*T_T_T-T“T‘?TfT“,

T T T 1777 ITT—]'T rrTTTT o T

LA A A A A A AL AL AL A A A B B A T T T T

gir/heilrum

’ '

A

/ !

’ 1
111/111J111

-

T
i

Lo v b e by v v o baag

Mach 1.7

o S TS AU S RO SO I L,J‘,,i__h 05 D S W T L;,,,l S [ U S S S W W W L,,L_L_L 9 U W S s e Wy | ] Lol L_l_L_d

oY . 8 1. c . B

l

Fig. 31



10

29

28

Cime = 009

MBS o

FWE PUTPE PUPTY W

\MARAS RASSS ARAAS A ASAS SAS S oAl

FUY THTY PUUTY FUTee Feeed |

2

2 - L] L) 10

(tme = 2.5

asaad

P TTE

aadasaalasaadsaasbaoaaald

° Al & L1 16

Fig. 32

) WP FTTTY PUwey Feeey

LS RAAnS AaREE AASSS IASAS Bal




(0N

U

(1

Iy

@)

J

ny

o}

£

)]

T [ S B GRS i S S R R 'T’—f ToTTTYT T 1T TT ”’T'T_T‘"T" TT_fﬁ

air/SkFb

O R G L,i

0. . c . k3



(¥ )

# Y

A*MW31
B*MW29
C*MW32
DeMW28

45

.40

.35

.25

.20

o <
by
0. oo

YVIYVl1!]111!'!‘]1{11"IVTV1IY‘IT\TYIIIIIIIITVYITYT1I|IYVTI]IIITT[‘IIVY!TIYIT‘ YT|11‘YTVI1|TY111"1111IVIU‘T]‘

|

I TTTTTTTVT
.

lllLlll_lllllLlllll te it LR

TTT IIT[TII TTTTTA

lllllLLlellllA_LL_].J_L_l_LlLllllll lllllllkllll_llll

erTIIIIT‘

TIIII
r\\

;
T_T_T'T_T'TT'rTTTTTT'T—T‘ 7T ]
N

1ytiigl llllllllllllllllllIllll!lllll[llllllllllllllLllIllllLLllllllllIllllllll||llllllllJlllllllIllllllllllLr
~— o~ ~” - u (=) ™~ oo N o —

o
-—

X

Fig. 34



LS

TIME = 3¢
OT( 97, 78) =

MW 31

CYCLE = 12446

2.59830E-01

\AASARASASARESRRASES LRSS RS IS RIAASS IS S S

TS FETW NNTEN ST STUTE ST U SUR TS SRUTE FEETS PEUTE ST T
R - ~ ) - w o ~ © - o -
9o . - - . . .
9 - -
W INP 0.000 t7.300 8.000 14 000 KNMAY = 244 JNMAX = #)
PLE
W32
CYCLE = 11552 DT( 96, 31) = 4.43239E-01
SARASRAS erTwmﬁfﬁTrﬁ?ﬂW

U U SN

VIV ENTIV ST ST TS FNTTY FUTTE AU T SE T FUTTS S r N |
- ~ ” - " ° - - - -] -
o . . ! g N g .
[ - -
¥ INP 0.000 11.300 8.000 14.000 KNMAX = 244 JNMAX =
2Le

[y

MW29

CYCLE = 12228 DT( 97, 56) =

IARARAARARRAARS AARRS AR MAAAS MASAS MLSRE RASME IAASE SRR

**”T*ﬁ*T”**h*Tﬂ*T“TTh*Tﬁ*fh**ﬂ*ﬂ*Tﬁ*fﬁ**ﬂq
D

1

1

“ |
[
.
- ° p
: . , o
L)
YN U PRI FIUT U T ST FUUE DUTTS SUUUS BUURS
- ~ - - n © ~ © o © -
o . B s "
:l!:’ 0.000 11.300 8.000 14 000 KNMAX = 244 JNMWAX =

Fig. 35

3.51259€-01

[}

1

'y Y ST TEY CUTTY BTT U FTUTE FPETE FUTEU PUTES FUTTE PUTTE FYUTY|

: - -— ~ - - 4] w ~ [ ] - o -
. _ , _ _

E‘ - -
VINP 0.000 11.300 8.000 14.000 KMMAXY = 244 JNMAX = 7
PLE
MW 28
CYCLE = 10381 DT( 99, 2) = 3.36081E-0"



2

28

YT YT T T T Y T Y YT T Y VY

WY PUWEY FUWTY PUTTE FT U e

2 L 6 ] 10

Y

Aas il s

\BAE A A RS S AL L DA S DAL SE B

aadaaaabasasdasaal os

2 " 6 [

10

LES

a0

29

LSS B s S s A SLE AL I

asadasssdasasdaosanlsan

AR B

adoas

2 - L] 8

10

MAALEE 10 e | vy

\BAS & e s

2y

22

21

20

T

LAAS RASASS RASSS BESES MLl

‘9

e h
R ey | aadasaalaaaalasasl o

o 2 bl L L] 19
time = 3.0

- T Y YTTY YT Ty
e

10.

5 saabasaslasaslasnaalasacl

2

“ & e o



L(t) (cm)

t(ms)

Fig. 37

[ T T I /
AIr/SF. /
/
/
/
/
/
— ]
/
/
/
/ -
;)
/
/
!
M.=1.3.L(0)=0.2cm ! /
Iy
_/ -1 Iy |
- \ 1/
\ 1
\\ I
———n 1
\ \& -
M, =13,1(0)=0.1 cm\/
Vv
| 1 1
2.0 2.5 3.0



RE

62

60

a8

LERSE S AR SR En oy SO SR S a2 mnd

POl PP U PP S |

2 Rl . 8
t ey = 28
S Sn b o) Bh SN S0 a0 o InAh A S RS B

Ao oo a b

2 - L

8

60

L]

L)

ffme = 0 R

YT T T Y T T T YT

adaa b aa o b aa s ad o s ol

2

time = 1.5

N ] ]

Fig. 38

wa

o I
o M aha s o b s o s b s s s
3
[ H “ [} []
timg = 4.0
LA T T
Ll

alaacs a b aaaad s o an

>

u

5

8




X3 R e B

YT TTTYYYTY Y

EHM

60
- PEPEPEPE WAPIT AW Ul S
0 2 . ] (]
Ling = 2.8
A S i o e an s Sn o ae 2e s I S S 1
P J 9
8 F 4
[y > - - q
LI o b
L o 4
aaaalda o st s aa ok P
] 2 . [ ]

62

se

.

3

I

1

time = 08

T YT T T YT YT Y Y YT YT T Y

P sl aaaad o b a s st s

2 - ] 8

ttme » 35

LS o Sn A0 o g on S0 AR by SRS SR AN B

aaaadasaadoana o b ot

2 ~ 6 L)

Fig. 39

Vlime = 2

™

g YV TTTTTYTrTTY

w

we. p

Ty Ty

80 } 9
PEFATET S PR R adoiaa st
38
) 2 .. ] [}
bime = 4.0
38 vy . Tr T YTy
w.r o

acdoas ool s

N T .

30

2 L]

L] ]



e

{ me > NN

Ty T

ey

i haa aa La

aad oa s as b

L 4
RPN SR DI UP DU
B e - € 8
1 me =« 2 8
YT T v A
o -

c 2 .

[

5¢

60

a8

Qe e
LS AN on dh S SR B S A S an oy & v v
r
<

e

e - .3 8
Cme = 15
T T Y o1

Fig. 40

uu

we

arhachdoaa aa b o aaa b oo ol

2 N L] L]

{imeg = 4 0

aaaasl s asa b o aaa s oo ol s

2 - [ a




time = 4.0

| Y Ak s a_a b

20 —aa A A s

n 2

Y. 6. 8.

38.

36.

3y,

20.

Fig. 41

time

Y.




vome = 00 limeg = 0 1} [

ARSS RASSS SESAS RS ES OSSR Y T rYTY A RASSE O

i PO T PO U PO ) POV IPPUUS VOUUTTIT i i Bl

Q 2 “ 1] a ta ] 2 “ L 8 'a 2 2 s a L] 10
‘iee w 1 9 timg = 3 Limg = 5.7
T R —

Y PEUWE PTPY PUTTU e U

Fig. 42



Our simulations show good agreement with recent
shock tube experiments
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